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▪ Professor in Mechanical Engineering
▪ I also teach for SMT ☺

▪ Our lab is in the MED building

▪ Pas francophone (Espagnol)

▪ We work on/with Micro/Nano Electro Mechanical Systems (MEM/NEMS)

Who am I?
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▪ Resonators

▪ MEMS

▪ What do we do?

▪ How to use MEMS Resonators for communications (cellphones)?
▪ Different types of resonators for filters

▪ In-depth fabrication

My talk today…
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Resonators
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▪ Resonance frequency

▪ Quality factor

Resonators
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MEMS
(Micro ElectroMechanical Systems)
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▪ Silicon was a game changer:
▪ Stiff

▪ Light

▪ Brittle

▪ Easy to machine

How it started…
P

ie
zo

e
le

c
tr

ic
 M

E
M

S
 r

e
s

o
n

a
to

rs
 f

o
r 

5
G

 f
ilt

e
rs

G
. V

ill
a

n
u

e
va

 -
E

P
F

L
-N

E
M

S



8

▪ Small footprint

▪ Good performance

▪ Reliability

▪ Easy** to produce

How it developed…
P

ie
zo

e
le

c
tr

ic
 M

E
M

S
 r

e
s

o
n

a
to

rs
 f

o
r 

5
G

 f
ilt

e
rs

G
. V

ill
a

n
u

e
va

 -
E

P
F

L
-N

E
M

S

2020’s

2010’s00’s

90’s

80’s



Our Research
(MEMS Resonators)
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Filters and Oscillators Coupled Dynamics
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Resonators for Communications
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▪ More bandwidth

▪ Higher frequencies

▪ More bands

Evolution in mobile communications
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30 kHz 0.9-2 GHz 1.6-2 GHz 2-4 GHz 3-4 GHz 3-30 GHz

2 kbps 64 kbps 2 Mbps 100 Mbps 1 Gbps >1 Gbps

𝑃
𝑜
𝑤
𝑒𝑟

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Carrier

InformationBandwidth

Picture from Yole Developpement
www.yole.fr

http://www.yole.fr/


16

▪ Commercial challenges

▪ Coupling!!!

▪ Frequency!

▪ Q – now 500, 2000 in some years

▪ Reduction of spurious modes

“Our” Goal
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Band
Frequency 

Range
Bandwidth

Fractional 
Bandwidth

Resonator 
Coupling

n77 3.3-4.2 GHz 900 MHz 24% 65%
n78 3.3-3.8 GHz 500 MHz 14% 37%
n79 4.4-5.0 GHz 600 MHz 12% 31%

Wifi 6E 5.9-6.4 GHz 500 MHz 9% 25%
n28 703-748 MHz 45 MHz 7% 20%

▪ Material (AlxSc1-xN and LiNbO3)

▪ Fab Technology

▪ Design (optimizing acoustic boundaries)
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▪ AlScN Resonators

▪ LiNbO3 Resonators
▪ S0

▪ SH0

▪ A1 (XBAR)

▪ SH1 (YBAR)

Brief overview
P

ie
zo

e
le

c
tr

ic
 M

E
M

S
 r

e
s

o
n

a
to

rs
 f

o
r 

5
G

 f
ilt

e
rs

G
. V

ill
a

n
u

e
va

 -
E

P
F

L
-N

E
M

S



18Cell phones
P

ie
zo

e
le

c
tr

ic
 M

E
M

S
 r

e
s

o
n

a
to

rs
 f

o
r 

5
G

 f
ilt

e
rs

G
. V

ill
a

n
u

e
va

 -
E

P
F

L
-N

E
M

S

𝑃
𝑜
𝑤
𝑒𝑟

Carrier

Info

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦



19

▪ More bandwidth

▪ Higher frequencies

▪ More bands

Evolution in mobile communications
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▪ Combining 3 resonators
▪ Two “in series”

▪ One “shunted” to ground

Making a filter – Ladder topology
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Antenna
RF filter LNA

𝐹𝑟𝑒𝑞

𝐴
𝑑
𝑚
𝑖𝑡
𝑡𝑎
𝑛
𝑐𝑒

Coupling (𝑘𝑡
2 ∼

𝑑2𝑆

𝜖
)

Coupling

Q factor
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SAW BAW

IHP

+ Crystalline material
+ Many frequencies on same wafer
- Moderate 𝒌𝒕

𝟐 (surface waves)
- Metal losses reduce Q

Classic
< 𝟏 𝐆𝐇𝐳 < 𝟐. 𝟓 𝐆𝐇𝐳

TF

+ Thickness defined frequency
+ Higher frequencies easily attained
- Poly-crystalline material (lossier)
- Moderate 𝒌𝒕

𝟐

SMR
Bragg reflector Power handling

Dominate below 1 GHz Dominate above 1 GHz
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▪ Commercial challenges

▪ Coupling!!!

▪ Frequency!

▪ Q – now 500, 2000 in some years

“Our” Goal
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Band
Frequency 

Range
Bandwidth

Fractional 
Bandwidth

Resonator 
Coupling

n77 3.3-4.2 GHz 900 MHz 24% 65%
n78 3.3-3.8 GHz 500 MHz 14% 37%
n79 4.4-5.0 GHz 600 MHz 12% 31%

Wifi 6E 5.9-6.4 GHz 500 MHz 9% 25%
n28 703-748 MHz 45 MHz 7% 20%

▪ Material (AlxSc1-xN and LiNbO3)

▪ Fab Technology

▪ Design (optimizing acoustic boundaries)



AlScN resonators
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▪ AlN and AlScN can be deposited via sputtering (<400ºC)

▪ Doping it with Scandium increases piezoresponse

▪ Fabrication of S0 resonators

#1 – AlScN Resonators
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* Lozzi et al, TUFFC, 2018 Special Thanks to Prof. P. Muralt
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26In-depth Fab
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▪ First S0 devices with 17.5% Sc in AlN

▪ Average 𝑘𝑡
2 = 4.4% @ 194 MHz

▪ Average 𝑘𝑡
2 = 3.3% @ 478 MHz

▪ (spurious modes)

▪ 2x more coupling than AlN

#1 - AlScN resonators
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* Lozzi et al, TUFFC, 2018

50 μm

0

500

1000

1500

2000

2

3

4

5

150 194 388 478

M
ax

 Q
m

A
V

G
 k

t2
 [

%
]

Frequency [MHz]

Special Thanks to Prof. P. Muralt
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▪ Currently we are increasing concentration up to 40% Sc
▪ Slightly below the phase transition

▪ Challenges:
▪ Etching → around 70º sidewalls are obtained

▪ Growth → minimizing abnormal grains

#1 - AlScN resonators
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LiNbO3 Resonators (S0 and SHO)
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▪ LiNbO3 also broadly used – its properties depend a lot on orientation

▪ We use (X-cut) LiNbO3 thin films on oxide or Si
▪ Substrates available since 2012

#2 – LiNbO3 S0&SH0 resonators
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31In-depth Fab
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32In-depth Fab
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▪ Challenge: 
▪ Sidewall angles close to 80º

▪ Lateral roughness in the order of 50nm

▪ Process scalable up to 4-5 GHz

#2 – LiNbO3 S0&SH0 resonators
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𝑓𝑟 =
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𝜆

=
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1

𝑝𝑖𝑡𝑐ℎ
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▪ In the same wafer, we could fabricate optimized S0 and SH0 devices

▪ 𝑘𝑡
2 is 30% (S0) or 40% (SH0)

▪ Loaded Q (average) was 650 in our first run

#2 – LiNbO3 S0&SH0 resonators
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SH0_ = 40%
SH0_ = 589

= 283 MHz 

SH0 mode S0 mode

Device orientation: 170°

(b) Device 2

S0_ = 31%
S0_ = 724

= 470 MHz  

SH0 mode S0 mode

Device orientation: 30°

(a) Device 1

(i) (i)(ii) (ii)
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▪ Design optimization – tweaking inactive regions 

▪ Coupling was maintained

▪ Q improved 3x

#2 – LiNbO3 S0&SH0 resonators
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▪ Search for larger coupling

▪ Removing major spurious (S0)

#2.1 – SH0 resonators in XY36
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▪ 1st round of fabrication – Anti-Resonance heavily suppressed

The Devil is in the Details
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* Stettler et al, IUS 2022, Venice
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▪ 1st round of fabrication – Anti-Resonance heavily suppressed (𝑅0 ∼ 300 Ω)

▪ 2nd round – Defining resonators via a narrow trench (𝑅0 ∼ 30 Ω)

The Devil is in the Details
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* Stettler et al, IUS 2022, Venice



39

▪ 1st round of fabrication – Anti-Resonance heavily suppressed (𝑅0 ∼ 300 Ω)

▪ 2nd round – Defining resonators via a narrow trench (𝑅0 ∼ 30 Ω)

▪ 3rd round – Narrow trench + Controlling the resist sidewall (𝑅0 ∼ 5 Ω)

The Devil is in the Details
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* Stettler et al, IUS 2022, Venice
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▪ Search for larger coupling

▪ Removing major spurious (S0)

#2.1 – SH0 resonators in XY36
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▪ Up to 𝑅𝑎𝑅 of 16%

▪ Loaded Q factor

▪ 350 @ 1.1 GHz

▪ 1000 @ 280 MHz

#2.1 – SH0 resonators in XY36
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Performance:

▪ 300 nm thick suspended platelet

▪ Al IDT transducer

▪ 𝑓𝑟 300 MHz or 1.1 GHz 
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▪ 1st order correction: Suppression around 𝑓𝑟

▪ 2nd order correction: Suppression over entire band and 𝑅𝑎𝑅 of 16%

#2.1 – SH0 resonators in XY36
P

ie
zo

e
le

c
tr

ic
 M

E
M

S
 r

e
s

o
n

a
to

rs
 f

o
r 

5
G

 f
ilt

e
rs

G
. V

ill
a

n
u

e
va

 -
E

P
F

L
-N

E
M

S

Record Figure of Merit

* Stettler et al, JMEMS, submitted
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▪ Increase Q factor
▪ Optimizing boundary conditions

▪ Minimizing fabrication residues

▪ Changing electrode material

▪ Increase frequency
▪ E-beam lithography allows it (also DUV)

▪ Thinner layer of LNO → might cause extra losses and reduce Q

#2.1 – SH0 resonators in XY36 – Next steps
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LiNbO3 Resonators (A1, XBAR)
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▪ Shear A1-like mode

▪ Originally in z-cut (see later)

▪ Resonant frequency is predominantly thickness defined

𝑓𝑟 =
𝑉𝐴1
𝜆

=
𝐸𝑒𝑞

𝜌𝑒𝑞
∙
1

2𝑡

#3 – LiNbO3 XBAR
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▪ Easily reaching 5GHz

▪ Few spurious modes (in z-cut)

▪ Coupling 𝑅𝑎𝑅 of up to 10.5%

#3 – LiNbO3 XBAR
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Good candidate for n79
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▪ Frequency controlled by pitch when approaching thickness

▪ Coupling affected by pitch 

#3 – LiNbO3 XBAR
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▪ Frequency controlled by pitch when approaching thickness

▪ Coupling affected by pitch 

▪ Spurious mode can be suppressed with the right metallization ratio

#3 – LiNbO3 XBAR
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▪ Increasing coupling going to XY128

▪ 𝑅𝑎𝑅 up to 14%

▪ Bandwidth 1 GHz @ 6.3 GHz

▪ More spurious appear compared to z-cut

#3.1 – LiNbO3 XBAR – XY128
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LiNbO3 Resonators (SH1, YBAR)
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▪ Shear SH1 mode

▪ Originally in Y-cut

▪ Resonant frequency is predominantly thickness defined

𝑓𝑟 =
𝑉𝐴1
𝜆

=
𝐸𝑒𝑞

𝜌𝑒𝑞
∙
1

2𝑡

#4 – LiNbO3 YBAR
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▪ Simulations reveal many spurious modes in-band
▪ Travelling wave perpendicular to the electrodes

▪ With trenches the spurious are heavily suppressed

#4 – LiNbO3 YBAR
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▪ Fabrication with floating metal

#4 – LiNbO3 YBAR
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▪ Experimental confirmation of simulation results

▪ Coupling 𝑅𝑎𝑅 up to 17.5%

▪ Compromised Q

#4 – LiNbO3 YBAR
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Good candidate for n78
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Thank you for your 
attention!!

Any questions?
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